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REGENERATED KERATIN FIBERS FROM CHICKEN FEATHERS FOR TEXTILE 

AND BIOMEDICAL APPLICATIONS 

Helan Xu, Ph.D. 

University of Nebraska, 2013 

 

Adviser: Yiqi Yang 

This dissertation focuses on dissolution of keratin from chicken feathers and 

subsequent development of normal and ultrafine fibers for textile and biomedical 

applications. In the last few decades, efforts have been made to transform the largely-

available waste material, chicken feathers into fibers but they have yielded no success. In 

addition, keratin is preferred in biomedical applications due to the existence of cell-

binding motifs in its molecular structures. However, 100% keratin ultrafine fibers have 

not been developed also due to lack of proper dissolution methods. Regarding the 

structures of scaffolds, three-dimensional (3D) fibrous structures possess advantages over 

two-dimensional (2D) structures as tissue engineering scaffolds since they show higher 

structural similarity to the natural extracellular matrices.  

In this research, dissolution conditions are studied in order to obtain keratin solution 

with good spinnability. First, keratin is extracted from chicken feathers with backbones 

preserved after cleavage of inter- and intramolecular disulfide bonds using cysteine. 

Sodium dodecyl sulfate (SDS) is applied to dissolve keratin for spinning and mechanism 

of dissolution of keratin with SDS is investigated. Normal keratin fibers are wet spun and 

3D ultrafine keratin fibrous scaffolds are produced via electrospinning. Increasing SDS 

concentration intensifies ordered conformation of keratin and firstly increases and then 

decreases viscosity of solution, suggesting continuous disentanglement of keratin 
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molecules and enhancement in inter- and intramolecular electrical repulsion. The 

diameters of obtained fibers as small as 20 microns also prove good drawability of 

keratin solution. The change of crystallinity is found to be consistent with that of tensile 

properties. In addition, structures composed of three-dimensionally oriented ultrafine 

pure keratin fibers are electrospun. The 3D scaffolds are water-stable. The adipose-

derived mesenchymal stem cells penetrate more deeply and distribute more evenly in the 

3D keratin fibrous structures comparing to commercial 3D scaffolds and electrospun 2D 

polylactic acid (PLA) scaffolds. The dissolution and 3D electrospinning methods are 

applied to wheat glutenin, another highly-crosslinked plant protein for adipose tissue 

engineering.  
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CHAPTER 1 

INTRODUCTION 

1.1. Regenerated fibers for industrial applications 

Global fiber production in 2012 approached 85.8 million tons, of which 

approximate 50.6 million tons were synthetic fibers and about 30 million tons were 

cotton fibers (Rauschendorfer, 2013). Synthetic fibers are not sustainable because of 

limited petroleum reserves and rising oil prices; while production of cotton, the major 

natural fiber, has been decreasing. Therefore, to satisfy the increasing global consumption 

of fibers and to resolve the problem of limited resources, it is necessary to develop fibers 

from alternative resources with large availability at a low price.  

Chicken feathers could be prospective resources to produce regenerated protein 

fibers. The US poultry industry produces more than 4 billion pounds of chicken feathers 

each year (Xia et al.,  2012). Some of the feathers are autoclaved or hydrolyzed and then 

used as animal feed with low nutritional value (Coward-Kelly et al., 2006), and the rest 

are disposed through landfill, which occupy land and have potential to transmit viruses 

and pathogens (Yamamoto et al., 2010).  

Efforts have been made to explore wide industrial applications of chicken feathers. 

Chicken feathers have been used as reinforcements to develop light-weight composites 

(Huda and Yang, 2009; Reddy and Yang, 2010), exploded via high-density steam into 

powders (Zhao W., 2012), and hydrolyzed, grafted or acetylated and then compression 

molded into thermoplastic films (Jin et al., 2011; Hu et al., 2011). In 2000s, U.S. 

Department of Agriculture (USDA) launched projects to transform chicken feathers into 
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feather-based industrial products, such as filter membranes, disposable utensils and 

containers have been developed (Durham, 2009). In biomedical fields, structures such as 

sponge scaffolds, coatings and conduit filling made from keratin have been widely 

investigated (Tachibana et al., 2002; Reichl, 2009; Sierpinski et al., 2008). 

Developing regenerated keratin fibers could not only provide new sources for 

fiber industry to alleviate the fiber shortage, but also add value to poultry industry and 

address related environmental concerns. Chicken feathers contain about 90 wt% of 

keratin. As small linear proteins with only a few bulky side groups and molecular weight 

higher than 10 kDa, feather keratin meets the molecular requirements for fiber spinning 

(Poole et al., 2008). Keratin has about 7% cysteine, which could serve as crosslinking 

sites to form water-stable fibers (Arai et al., 1983).  

To the best of our knowledge, no efficacious method has been developed to 

produce regenerated keratin fibers, though relevant research could date back to more than 

seventy years ago. In 1943, regenerated keratin fibers were fabricated via wet spinning of 

protein-surfactant complexes in the laboratory (Harris and Brown, 1947; Lundgren, 1941; 

Lundgren and O'Connell, 1944). Another patent issued in 1948 described a two-step 

process to produce regenerated keratin fibers (Evans and Shore, 1948). A short report 

published in Nature in 1949 also indicated successful regeneration of keratin fibers from 

wool (Wormell and Happey, 1949). However, the mechanical properties of the fibers 

were not reported. Nevertheless, we tried the methods and found that the results could not 

be repeated, and we did not find any other reports regarding successful repetition of the 

methods as well. The latest report regarding spinning of pure regenerated keratin fibers 

was in 2008. Fan dissolved extracted feather keratin in ionic liquid for wet spinning (Fan, 
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2008). However, the obtained fibers showed tensile strength as low as 23 MPa. 

Composite fibers using keratin as one component had also been developed. Keratin and 

polyvinyl alcohol (PVA) composite fibers have been produced via wet spinning (Bin, 

2011). Nevertheless, incorporation of high amounts of unsustainable petroleum-based 

PVA and toxic crosslinker glutaraldehyde prevented wide applications of the composite 

fibers.  

One prerequisite of producing keratin fibers is to obtain linear keratin molecules 

with preserved backbones. The keratin in natural feathers is a network crosslinked via 

disulfide bonds. Alkaline treatment randomly destroys backbones and disulfide bonds in 

feather keratin, and resulted in short molecules that could not be spun without addition of 

synthetic polymers (Bin, 2011). Extraction of feather keratin with highly reductive thiol 

could keep the molecular backbones intact but dissociate the disulfide crosslinks. 

However, fibers could not be developed if the extracted linear keratin molecules 

remained entangled in solution (Jia et al., 2012). In addition, most widely used thiols, 

such as mercaptoethanol and dithiothreitol cannot be used in large scale, because they are 

either environmentally hazardous or high in price. Keratin also has been reduced and 

extracted using sodium sulfites with a low yield, due to their relatively low reducibility. 

Moreover, ionic liquids could dissolve keratin mainly by interrupting hydrogen bonds 

instead of disulfide bonds (Xie et al., 2005; Idris et al., 2013). The resultant fibers with 

diameters ranging from about 75 to 110 m inferred poor keratin spinnability (Fan, 2008), 

which could be due to the non-linearity of obtained molecules and remained molecular 

entanglement (Ghosh and Banerjee, 2001). Furthermore, disentanglement and alignment 

of linear polymers in solution are the other key factors for successful development of 
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satisfactory fibers. If the spinning dope contained randomly folded polymers, the 

drawability of keratin could be insufficient to generate fine fibers.  

Using surfactant is a feasible approach to disentangle and align keratin in solution. 

The use of SDS to disentangle and align proteins, carbohydrates and synthetic polymers 

has been reported widely (Thuresson et al., 1996; Stenstam et al., 2001). Expansion of 

polymers was ascribed to increased electrical repulsion among molecules, as well as 

unraveling of polymer chains from assemblies (Fan, 2008). Water-insoluble proteins 

were assembled into random coils in water via strong hydrophobic interaction, which has 

a potential to be interrupted by surfactants. However, limited study has been done on the 

effect of surfactant on conformational change of water-insoluble proteins. 

1.2. Ultrafine fibrous structures for tissue engineering 

Tissue engineering scaffolds are designed as temporary artificial extracellular 

matrices (ECMs) to support attachment, proliferation and development of cells (Shastri, 

2009).
 
Ideal scaffolds should be capable of closely mimicking the topographies and 

spatial structures of native ECMs, in order to facilitate cells to grow and differentiate 

following the patterns similar to that found in native tissues and organs (Bhattarai et al., 

2006; Dvir et al., 2011).
  

Morphologies of ECMs vary according to functions of target tissues and cell types 

in the tissues (Knight et al., 2000; Roskelley et al., 1994; Yamada and Cukierman, 2007). 

For example, in skin tissue, the top layer is formed by compact packing of epithelial cells 

on a 2D fibrous ECM basement membrane. Three-dimensional spatial spreading of 

fibroblasts and immune cells occurs in the interior region of the skin tissue, and 

correspondingly the ECMs are constructed by stereoscopically and randomly oriented 
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ultrafine protein fibers (Smalley et al., 2006; Bosman and Stamenkovic, 2003). Fibrous 

structures with 3D orientation and random distribution can also be found in native ECMs 

in breast (Bissell et al., 2003), liver (Uygun et al., 2010), bladder (Zegers et al., 2003), 

lung (Petersen et al., 2010) and many other organs and tissues (Zhu et al., 2010). It has 

been reported that cells cultured on flat 2D substrates may differ considerably in 

morphology and differentiation pattern from those cultured in more physiological 3D 

environments (Cukierman et al., 2002; Griffith and Swartz, 2006). Therefore, it is 

reasonable to fabricate scaffolds with particular morphology and structure according to 

category and functions of original native tissues (Lu et al., 2010; Mikos et al., 2006; 

Spalazzi et al., 2008; Haycock, 2011).  

Three-dimensional fibrous structures with spatially oriented fibers are preferred to 

the 3D non-fibrous structures due to their higher degree of similarity to native ECM 

structures in cartilage. The 3D architectures in natural cartilage ECMs are composed of 

collagen fibrils and proteoglycans, and play pivotal roles in imparting mechanical 

strength, acting as reservoirs for biomolecule delivery, providing biological and physical 

guidance and regulation to cell behaviors, such as proliferation, shaping, migration and 

differentiation in multiple aspects (Knight et al., 2000). Three-dimensional non-fibrous 

structures, such as hydrogels or sponges, were built up by randomly or regularly 

interconnected polymer slices. The slices could not function in the same manner as fibrils 

in natural ECMs in terms of guiding cell spreading and interaction, promptly transmitting 

mechanical and biological signals among cells. Besides, faster attachment of cells could 

also be resulted from more available adhering sites and more nutrients and bioactive 

molecules adsorbed onto the 3D fibrous scaffolds due to the larger surface areas.  
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Three-dimensional fibrous scaffolds are also advantageous in terms of mass 

transportation, which is critical for uniform distribution of cells throughout the scaffolds. 

Compared to 3D fibrous scaffolds, the 3D non-fibrous scaffolds could result in uneven 

distribution of nutrient and cells over large length scale. Inadequate transportation of 

nutrient and waste has been correlated with a decrease in tissue quality as a function of 

distance from the nutrient source, since the most distant regions could become 

metabolically inactive or even necrotic. Three-dimensional fibrous structures are more 

prone to maximize cellular viability by modulating nutrient and signaling gradients for 

the control of cell behavior and tissue formation. The fibrous scaffolds with larger surface 

area than the non-fibrous ones may also have higher loading of serum proteins, which 

played critical roles in cell attachments.  

A few comparison studies based on synthetic and natural materials revealed the 

advantages of 3D fibrous scaffolds over non-fibrous ones in tissue engineering. In a study 

comparing 3D sponges and fibrous poly(ethylene glycol)-terephthalate/poly(butylene 

terephthalate) (PEGT/PBT) scaffolds for cartilage repair, the fibrous structures showed 

favorable mechanical properties and better in vivo production of GAGs in mice 

(Roskelley et al., 1994). 3D fibrous structure from another synthetic polymer poly(l-lactic 

acid) (PLLA) demonstrated better support of in vitro oriented differentiation of human 

embryonic stem cells than 3D solid walled structures (Yamada and Cukierman, 2007; 

Smalley et al., 2006). 3D fibrous structures from natural material chitosan also promoted 

chondrogenesis of stem cells better than 3D non-fibrous ones (Bosman and I. 

Stamenkovic, 2003). Attachment of osteoblasts on fibrous scaffolds were found much 

higher than on non-fibrous scaffolds (Woo et al., 2003). Mostly, cell attachment preceded 
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proliferation and differentiation, and thus the ultrafine fibrous scaffolds may provide a 

favorable environment for tissue growth. Fibrous structures for a broad applications of 

tissue engineering have been intensively investigated and summarized elsewhere (Bissell 

et al., 2003). Fabrication methods of micro- and nano-scale fibers have been briefly 

summarized in Table 1. There are good review papers for fabrications of fibers for 

biomedical applications (Uygun et al., 2010; Zegers et al., 2003). 

1.3. Fabrication of 3D ultrafine fibrous scaffolds 

There are mainly three technologies to fabricate 3D ultrafine fibrous scaffolds as 

shown in Table 1.1.  

Molecular self-assembly is the spontaneous organization of individual molecules 

into structurally-defined stable arrangements through preprogrammed noncovalent 

interactions, such as hydrogen bonds, van der Waals forces, hydrophobic interactions and 

electrostatic interactions (Whitesides et al., 1991; Lehn, 1993; Ball, 1994; Zhang, 2003). 

Self-assembly is a bottom-up approach to create nanofibers from small building blocks, 

including small molecules, peptides and nucleic acids. In this research, keratin is an 

existing macromolecule and thus the self-assembly method will not be suitable.   
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